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Abstract

As laser scanners become widely used in 3D data acqui-
sition of industrial sites, one challenging problem emerges:
given two data of the same site scanned/modeled at different
times, how can we tell the difference between the two? In
this paper, we formulate this problem as the 3D change de-
tection problem, and propose a novel method for detecting
object-level changes. In general, we notice that the changes
can be viewed as the inconsistency between the global
alignment and the local alignment. Therefore, we propose
a change detection framework that comprises global align-
ment, local object detection and a novel change detection
method. Specifically, we propose a series of change eval-
uation functions for pairwise change inference, based on
which we formulate the many-to-many object change corre-
lation problem as the weighted bipartite matching problem
which could be solved efficiently. Finally, we demonstrate
the feasibility of our approach through experiments on both
synthetic and real industrial datasets.

1. Introduction
Change detection plays vital roles in a variety of applica-

tions such as surveillance, tracking, data updating and smart
environments. Most previous change detection works have
been done on 2D data, i.e., images taken at different times or
different frames in a video. However, since 2D data are pro-
jected data that do not explicitly reflect the 3D structures, re-
covering the 3D pose from 2D data is often needed, which
faces many challenges such as illumination and occlusion
problems. On the other hand, 3D data have the advantage
that they are intrinsically correct in terms of the 3D pose,
thus can avoid many problems caused by 2D distortions.
Although 3D data become easier to achieve nowadays, most
changes detection in 3D data were manually done by pro-
fessionals, which is rather time consuming, as [5] pointed
out. Therefore, it’s necessary to develop a change detection
approach specialized in 3D data. Intuitively, the change de-
tection needs to be based on the alignment of the two data.
Once the data are aligned, there could be multiple ways to

detect the changes. A naive way is using octree to compare
the spatial difference [5]. For specific applications, differ-
ent methods could be applied, e.g. 3D change detection for
buildings [9]. In this work, however, we focus on the 3D
change detection of objects in industrial sites. We investi-
gate how change detection could be enhanced beyond the
traditional align-and-compare approaches.

Specifically, we are interested in changes of certain types
of objects, since in many applications only objects of inter-
est are considered important. Also, in many built facilities,
changes on certain types of objects are observed more often
than the other changes. For example, in an industrial scene,
the pose of a handwheel is changed frequently and the dif-
ference is vital since it could determine whether a valve is
open or closed. Therefore, we focus on the object-level
changes, whereas the changes of other large-scale substance
such as pipes and planes are not highlighted in our system.
Figure 1 illustrates the typical causes of the changes, in-
cluding appearance/disappearance, pose change (translation
and/or rotation) and replacement. In this paper, these causes
are naturally incorporated in the design of our change detec-
tion algorithm.

Note that 3D changes not only occur between point
clouds scanned at different times, but exist between point
clouds and mesh models as well. The mesh model could ei-
ther be the original design of the site, or manually modeled
data from real scans. Since we can apply a virtual scanner to
convert the mesh model to the point cloud format, our point
cloud based approach could be applied in both scenarios.

We summarize our major contribution as follows:

(1) We propose an object-level change detection algo-
rithm based on the estimation of the degree of change in the
pairwise scenario and the non-trivial change selection based
on weighted bipartite matching.

(2) We propose and integrate the whole change detection
system consisting of three essential modules: alignment,
object detection and change detection.

(3) To the best of our knowledge, this work is the first
one to address the change detection problem on 3D data for
complex industrial scenes at object level.



Figure 1. An illustration of possible causes of changes between
old data (top) and new data (bottom). (1) New - The new object
appears; (2) Missing - The old object is missing; (3)-(5) Pose - The
pose of the object is changed due to translation and rotation; (6)
Replacement - The old object is replaced by the new object.

2. Related Work

Change detection has been one of the basic topics in
computer vision. A systematic survey of 2D image change
detection algorithms can be found in [12], which focuses on
changes between general raw images instead of application-
specific change detection.

Mas [10] tests six change detection procedures on land
cover images and concludes that classification-based meth-
ods are less sensitive and more robust. We make an analogy
to this idea in our method: given the categories of objects
representing a small region of point clouds, we can obtain
results more robustly and with more semantic meanings.
Another object-based approach [14] classifies groups of
pixels corresponding to existing objects in the GIS database.
The term object here is used to denote geo-objects instead
of the industrial objects in this paper.

There are some common issues across both 2D and 3D
change detection, such as alignment, classification, detec-
tion and occlusion handling. However, the differences are
also obvious. For example, one of the key challenges in 2D
change detection is the illumination factor, while 3D change
detection does not have such issue. There have been bench-
marks such as [6] for detecting changes among frames in
videos. We can extend some ideas from the 2D scenario.
For example, background subtraction is the key idea of
many image/video change detection approaches (e.g. [1]).
In this paper, we treat the objects with relatively small scales
in the scene as foreground, and the backbone objects such
as planes and pipes as the background. Through this anal-

Case Explanation
Existence The object appears or disappears.

Pose The object is translated and/or rotated.
Replacement The object is replaced by another object.

Table 1. Causes of object-level changes.

ogy, we apply the object detection method [8] that contains
a backbone object subtraction step.

On the other hand, there have not been many existing
works dealing with the change detection in 3D data. One of
the earliest work in 3D data was proposed by Girardeau-
Montaut et al. [5]. They compare several octree-based
comparing strategies including average distance, best fitting
plane orientation and Hausdorff distance. The overlapping
score used in this paper has the similar effects to Hausdorff
distance. The deformation measurement system proposed
by Monserrat and Crosetto [11] also combines the global
registration and local matching, however, in their approach
manual selection of the objects is required, and the problem
of multiple correspondences among the objects is not tack-
led. Recently, Xiao et al. [15] presents a change detection
system for urban point clouds. Their method is based on the
consistency of the occupancies of scan rays. Our method,
however, does not need knowledge of the scan rays and can
thus be applied to any point clouds.

3. Causes of Change
Given that most industrial parts are rigid, we make an as-

sumption that each object is a rigid body. If part of some ob-
ject could be transformed (e.g. the handwheel on a valve),
it would be considered as a separate part.

Table 1 summarizes the possible causes of change of
rigid objects. For any single object, there can be two types
of changes: existence change and pose change. There are
two possible existence changes, appearing, i.e., the object
does not present in the first data but appears in the second
data, and disappearing, i.e., the object presents in the first
data but disappears in the second data. The pose change
can be caused by translation, rotation or a combination of
translation and rotation. For example, a handwheel could
be rotated to control the flow in a pipe. Finally, for the inter-
object scenario, i.e., the two objects are not the same object,
there could be a replacement change. Our goal is thus to de-
tect changes caused by these reasons.

4. Overview
The whole framework consists of three stages: global

data alignment, object detection and change detection. Fig-
ure 2 shows the pipeline with the step-by-step results for
the proposed system. The input of the system contains ref-
erence data and target data, both of which can be either 3D
point clouds or mesh models. If a mesh model is given,



it could be automatically converted to a point cloud by a
virtual scanner. In the first stage, the Sparse Iterative Clos-
est Point (SICP) method proposed in [3] is used to com-
pute a global alignment of the two point clouds. The target
data can thus be transformed to the same pose as the refer-
ence data. Then, in the object detection stage, we apply the
method proposed in [8] to detect the objects of interest and
as a result, the detected objects are locally aligned with the
library objects. In other words, our change detection system
is based on the inconsistency between the global alignment
and the local alignment. Finally, pairwise changes are esti-
mated based on several change estimation functions, and we
explore two approaches to solve the change selection prob-
lem, including the Greedy Nearest Neighbor (GNN) and the
Weighted Bipartite Matching (WBM).

5. Point Cloud Alignment
Since we are dealing with industrial data, where the

global structures have inherent rigid properties, it’s suitable
to apply the rigid registration techniques. The major dif-
ficulty for traditional ICP [2] is that it’s very sensitive to
outliers. However, the cases for missing data are often ob-
served in 3D scans due to various reasons.

Sparse Iterative Closest Point (SICP) [3] is a recently
proposed extension of the traditional ICP. Specifically, they
formulate the general sparse ℓp optimization problem and
empirically select p = 0.4 as the balanced result between
performance and robustness. There are several advantages
of SICP. First, it’s heuristic-free, compared to previous vari-
ations of ICP. Second, it has only one free parameter, which
is easy to tune for specific applications. Therefore, we apply
SICP for global alignment of data in this work.

6. 3D Object Detection
Given the aligned point clouds, we follow the idea of

the 3D object detection method proposed by [8] to detect
objects from each of them, respectively.

Detecting 3D objects from point cloud itself is a chal-
lenging fundamental problem. For industrial datasets, a ma-
jority of points belong to planes and pipes. Therefore, it’s
necessary to first filter such points that have little probabil-
ity of being in an object.

For each point we compute a normalized Fast Point Fea-
ture Histograms (FPFH) descriptor [13]. Five categories
are defined, i.e. four backbone shapes pipe, plane, edge
and thin-pipe, as well as the remaining points denoted as
the part category since they are most likely to be part of an
industrial part. We train four SVM-classifiers using LIB-
SVM [4] over these categories, including pipe vs non-pipe,
plane vs non-plane, edge vs non-edge and thin-pipe vs non-
thin-pipe. Finally, each point is assigned with four labels
corresponding to the four classification results.

The points in each categories are clustered using the re-
gion growing algorithm based on Euclidean distance, re-
spectively. Large connected components of the primitive
shapes are then removed from the original point cloud while
the smaller clusters are kept. After that, all the remaining
points are iteratively clustered using adaptive segmentation
[8] to obtain a list of candidate clusters.

For each of the point clouds from the templates in the
database and the candidate clusters, we perform feature
extraction using Maxima of Principal Curvature (MoPC)
method proposed in [7] to obtain a subset of points as the
key-points. For each key-point, we compute the 3D Self-
Similarity descriptor [7] with curvature similarity.

To determine which candidate clusters belong to which
object category in the database, we apply the greedy match-
ing scheme based on rigid-body constraints and overlapping
scores described in [8].

7. Change Detection

From the previous stages we can obtain two groups of
detected objects along with the transformation with regard
to the library objects. For a naive change detection system,
all the detected object locations are reported as auxiliary
information and the user is required to manually decide the
actual changes. However, we propose a method that could
automatically infer the changes among the objects.

In order to figure out the changes between two groups
of objects, we first consider the simplified case where each
group contains exactly one object.

7.1. Pairwise Change Estimation

Given any two detected objects X and Y in different
times, we could make several change evaluations between
them. The most fundamental evaluation is the category to
which each of them belongs. It’s natural to define that, if
they belongs to the same category, the category change is 0,
otherwise the change is 1 (Eq. 1):

Cc(X,Y ) =

{
0,Cat(X) = Cat(Y ),

1,Cat(X) ̸= Cat(Y )
(1)

Another significant change between two objects one
would observe immediately is the difference in locations.
We can thus define the location change as the distance be-
tween the centers of the objects (Eq. 2):

Cl(X,Y ) = ||X − Y ||. (2)

Even if the locations of the two objects are close, there
could be rotational change between them, e.g., a handwheel
could be rotated even if it stays in the same location. Let T
be the template of X and Y in the database, from the object



Figure 2. System pipeline for object change detection. The input contains the reference data (left) and the target data (right). Results from
major stages including global alignment, object detection and change detection are shown. In the illustration of object detection, detected
objects are highlighted with green color and bounding boxes. The visualization of change detection results is explained in Section 8.

detection module we know:{
X = R1T + b1

Y = R2T + b2
(3)

where R1 and R2 are rotational matrices and b1 and b2
are translation vectors. By eliminating T we have:

Y = R2T+b2 = R2[R
−1
1 (X−b1)] = R2R

−1
1 X+b3. (4)

Therefore, we can directly compute the rotational matrix
between X and Y as

R := R2R
−1
1 . (5)

The remaining problem is how we can measure the de-
gree of rotation. We use the Euler angles (yaw, pitch, roll)
derived from the rotational matrix (Eq. 6):

α = atan2(R21, R11)

β = atan2(−R31, (R
2
32 +R2

33)
1
2 )

γ = atan2(R32, R33)

(6)

Then, the rotation change can be represented by the norm
of (α, β, γ) (Eq. 7):

Cr(X,Y ) =
√
α2 + β2 + γ2. (7)

Finally, if the objects are close enough, we can mea-
sure their degree of overlapping. Specifically, we com-
pute the overlapping score between the two point clouds as
is proposed by [8]. The overlapping score with threshold
θ = 0.005 is defined as the proportion of the points in point
cloud A where there exists a point in point cloud B in its
θ-neighborhood (Eq. 8):

Ω(A,B) =
|{x ∈ A; ∃y ∈ B(||x− y|| < θ}|

|A| (8)

The overlap change is then defined by Eq. 9:

CΩ(X,Y ) =
√

(1− Ω(X,Y ))2 + (1− Ω(Y,X))2. (9)

Finally, if we presume that the two objects have a re-
lationship, we can decide the reasons of changes between
them using the similarity scores proposed above. Figure 3
illustrates the decision flow of pairwise change estimation.
If the categories of the two objects are different, then there’s
a replacement change; otherwise if the overlap change is
small than θΩ (In our experiments θΩ ≈ 0.7 corresponding
to the case where overlapping rate is 50%, i.e., Ω(X,Y ) =
Ω(Y,X) = 0.5), we claim that there’s no change between
the objects. Otherwise the location change and the rota-
tion change are checked by comparing them to thresholds
θl = 0.1 and θr =

√
0.22 + 0.22 + 0.22 ≈ 0.346.

7.2. Change Selection

Given the pairwise change estimation result, we now
consider the problem of selecting the most convincing
changes. A degenerated case is the one-to-many problem:
given an object X and several candidate objects Yj , we need
to figure out which object among Yj is the most probable
one corresponding to X . A straightforward method is using
the greedy algorithm to select the best candidate for each
object based on the distance. If the distance of the nearest
neighbor is too large (e.g. > 1m), then the candidate is con-
sidered to have no matched object. We refer to this method
as the Greedy Nearest Neighbor (GNN) method.

However, the minima might not be achieved simultane-
ously, which requires that we make a balance among the
measurements. Also, instead of only the location proxim-
ity, qualitatively we expect that the object Yj with the same
category, the minimum location change, the minimum ro-



Figure 3. Decision flow of pairwise change estimation.

tation change as well as the minimum overlap change with
respect to X be the most probable candidate, i.e., the one
with the minimum changes.

In order to answer this question, we need a comparable
measurement of similarity between X and each of Yj . Also,
the best candidate might not exist, as there could be miss-
ing/disappearing or new/appearing objects. For example, if
the location change is too large, then the objects are more
likely to be different ones, even if their category and pose
are similar. In the GNN method a threshold is put on the
distance, however, we propose a smoother solution by us-
ing the Gaussian function (Eq. 10):

g(x;µ, σ) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

. (10)

Formally, we define the change estimation between the
two objects X and Y as Eq. 11, where Cc, Cl, Cr and
CΩ are the estimation of category change, location change,
rotation change and overlap change, respectively:

C =(g(Cl; 0, σl0) · (1 + g(Cr; 0, σr)) + g(CΩ; 0, σΩ))

· (1− Cc) + g(Cl; 0, σl1) · Cc.
(11)

Here’s the explanation of Eq. 11. The standard devia-
tions σl0, σl1, σr and σΩ can be viewed as the soft thresh-
old for deciding correlation and non-correlation. The cate-
gory change estimation Cc acts as the indicative function.
If the objects are not in the same category, then the rota-
tion change and the overlap change are not well defined,
thus only the location change takes effect. If the objects are
in the same category, the rotation change would take effect
only when the location change is small, while the overlap
change would act independently since it inherently requires
a close distance. Moreover, the distance threshold for the

same category σl0 is larger than that for different categories
σl1, which gives a larger range for search of objects of the
same category. Generally speaking, objects of the same cat-
egory are preferred to be correlated.

To deal with the case where there’s no suitable candi-
date, we set a cutoff threshold C0 for the change estimation.
The value is set to be the change estimation value with re-
spect to two dummy objects YD1, YD2 at a location that is
far enough. We empirically define YD1 to be an object with
the different category at a distance of 0.5, and YD2 to be an
object with the same category at a distance of 1. C0 is thus
defined as Eq. 12:

C0 = max(g(0.5; 0, σl1), g(1; 0, σl0)). (12)

Instead of the single value for the pairwise change eval-
uation, we now have a matrix of the change evaluation val-
ues representing all the pairwise relationship between the
two sets of the objects. Next, we need to figure out which
relations should be kept. We formulate the problem as the
classical Weighted Bipartite Matching problem.

7.2.1 Weighted Bipartite Matching (WBM)

Given a graph G = (V,E), G is bipartite if there exists
partition V = Vx ∪ Vy s.t. Vx ∩ Vy = ∅ and E ⊆ Vx × Vy .
M ⊆ E is a matching on G if ∀v ∈ V there’s at most one
edge in M that connects v. We can define a weight function
w : E → R on the edges. The weight of M is given by

w(M) =
∑
e∈M

w(e). (13)

The goal of maximum weight bipartite matching is thus
to find argmaxM (w(M)), which can be solved efficiently
in O(V 2 log V + V E) with Hungarian algorithm using Fi-
bonacci heap.

7.2.2 Conversion to WBM Problem

We can now convert our problem to the maximum weight
bipartite matching problem. Each detected object Xi(1 ≤
i ≤ n) in the first data and Yj(1 ≤ j ≤ m) in the second
data can be represented by a vertex, and each weighted edge
represents the change evaluation value between the objects:

w(i, j) = C(Xi, Yj), 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m. (14)

Note that when the change is more significant, by the
Gaussian-based definition of function C (Eq. 11) the weight
is smaller, so to maximize the weights is equivalent to min-
imize the changes.

Since n and m might not be equal, we need to add
dummy vertices as well as dummy edges to balance the
graph. The traditional method is to assign zero weight to



the dummy edges, however, in our case not all objects need
to be matched to another object, meaning that certain ob-
jects could be preferably matched to a dummy object even
if there are unmatched real objects. In the extreme case, all
the objects are matched to dummy objects. Therefore, we
add exactly m dummy vertices to the X side and n dummy
vertices to the Y side, and assign the weights of the dummy
edges to be the cutoff threshold:

w(i, j) = C0, n < i ≤ n+m ∨m < j ≤ n+m. (15)

Finally, for each matched pair (X,Y ), if X is a dummy
vertex while Y is not, then Y is considered as the new ob-
ject; if Y is a dummy vertex while X is not, then X is
considered as the missing object. If both X and Y are not
dummy, we can apply the algorithm described in Fig. 3 to
decide the change between them.

8. Experimental Results
We demonstrate the feasibility of our approach on both

synthetic dataset and real dataset.

8.1. Synthetic Data

We create a data generator that can automatically gener-
ate pairs of changed scenes. Each scene is a combination of
randomly placed objects without backbone objects such as
pipes and planes.

We automatically generate two synthetic datasets, Sparse
and Dense, each containing 10 pairs of randomly generated
scenes. For each pair of data, 5−15 objects are unchanged,
10 − 20 objects have pose changes (including translation
and/or rotation), 0 − 5 objects are replaced, 0 − 5 objects
are missing and 0− 5 objects are new. For those with pose
changes, we limit the position difference to be no more than
0.6m. All objects are restricted in the l × l × l area to
enable contacts among the objects. For the Sparse dataset
l = 4m and for the Dense dataset l = 3m. The objects in
the Dense dataset have more chance of contacts, so Dense
is more challenging than the Sparse dataset. The process of
data generation ensures that the global alignment and object
detection are nearly perfect, thus the actual performance of
the change detection algorithm is evaluated. Each change is
represented as a tuple (16):

τ = (T,Cr, Ct, Pr, Pt), (16)

where T is the type of change, Cr and Ct are the categories
of the correlated objects in the reference data and the target
data, and Pr and Pt represent the locations of the objects.
The judgment of whether a detected change is true or not is
depending on the proximity of the tuples (17):

τ1 = τ2 ⇔(T1 = T2) ∧ (Cr1 = Cr2) ∧ (Ct1 = Ct2)

∧ (||Pr1 − Pr2|| < ϵ) ∧ (||Pt1 − Pt2|| < ϵ),
(17)

Method Precision Recall
Perfect Object Detection + GNN 68.4 70.3
Perfect Object Detection + WBM 100.0 100.0

Automatic Object Detection + GNN 42.6 54.1
Automatic Object Detection + WBM 61.4 73.0

Table 3. Statistics of the change detection results on real dataset.

where ϵ = 0.1 is the tolerance of localization error.
Table 2 shows the statistics of the two change detection

methods on the synthetic datasets. WBM outperforms GNN
on both datasets. Specifically, while WBM and GNN have
similar recall, WBM has significantly higher precision.

8.2. Real Data

We test the methods on both cloud-to-cloud and mesh-
to-cloud data of real industrial sites, containing totally 37
changes in ground truth. The real dataset is more challeng-
ing than the synthetic dataset in that the global alignment
and object detection are not perfect. For example, if an
object failed to be detected in the object detection stage,
the change on it would not be detected in the change detec-
tion stage as well. Therefore, we compare 4 combinations
of methods, including the two change detection algorithms
WBM and GNN combined with either automatic/manual
object detection. The statistics are summarized in Table 3,
where we list the precision and recall on the real dataset for
either perfect (manual) object detection or automatic object
detection combined with WBM or GNN.

Obviously perfect object detection would given better re-
sults than the automatic object detection which could miss
some objects. Still, it’s surprising that given the perfect ob-
ject detection results WBM would achieve a perfect preci-
sion and recall in our test dataset. On the other hand, even
with the perfect object detection results, GNN could only
achieve around 70% in both precision and recall.

Figure 4 illustrates the example of cloud-to-cloud change
detection and Figure 5 shows the example of mesh-to-cloud
change detection. In final results, the reference data is
shown as the baseline in light blue, the objects in the ref-
erence data that are found to have a change are highlighted
with deep blue, while the objects in the new data that are
found to have a change are highlighted with red. Each de-
tected object has a bounding box, and the ones that are not
highlighted with deep blue or red colors are the ones found
to be unchanged. Four labels are assigned to highlight the
changes, including New, Miss, Pose and Replace. For pose
change and replacement change, there’s a green line to rep-
resent the correspondence between the objects.

From the figures and the table we can see that, The false
alarms are mainly due to the imperfectness of the first two
steps. For example, the false alarms of the flanges in the first
data case (Fig. 4) are due to false alarms and mis-detection



WBM GNN
Data Truth TP FP FN Precision Recall TP FP FN Precision Recall

Sparse 212 201 4 11 98.0 94.8 199 18 13 91.7 93.9
Dense 212 183 23 29 88.8 86.3 182 46 30 79.8 85.8

Table 2. Statistics of the change detection results aggregated from 10 pairs of randomly generated scenes in each synthetic dataset.

in the object detection module. The false alarms of the pose
change in the second data case (Fig. 5) are due to the small
displacement of the global alignment (Fig. 5 (c)). It’s also
important to note that the unchanged objects are not counted
in the statistics as the ground truth, while our method suc-
cessfully identifies many of the such cases as in Fig. 4.

It’s worth pointing out that the change detection module
is extremely fast. For an input of two point clouds each con-
taining 150k points, the running time of the whole system
containing global alignment and object detection modules
is about one hour, while the running time of the change de-
tection module using either method is less than 10 seconds.

9. Conclusion and Future Work
In this paper, we define and address the problem of

object-level change detection in point clouds. We present
a new approach, in which the global alignment, local ob-
ject detection and object change inference are combined to
achieve robust detection of changes. Specially, we propose
the change evaluation functions for pairwise change esti-
mation, and use the weighted bipartite matching to solve
the many-to-many object correlation problem. As far as we
know, this is the first work addressing the 3D change detec-
tion problem in complex industrial scenes at object level. In
the future, the scheme could be extend to detect changes of
large-scale non-part objects such as pipes and planes.

Here are some insights of possible improvements:
(1) Enhancement of global alignment. The accuracy of

global alignment could largely affect the accuracy of the
whole system, therefore, it’s important to ensure a good
global alignment. Effectively the object detection module
does not rely on the global alignment, moreover, it can pro-
vide necessary information that can help the initial setup of
the point clouds, to which the global alignment is sensitive.
The first idea is to align the backbone objects separately.
Note that ground planes, which contain many points, typi-
cally provide only one orientation cue, while the pipes, act-
ing as the skeleton of an industrial site, might be easier to be
aligned. This is more significant considering the case where
ground is not present in exactly one of the data. The second
idea is to use the detected as hyper-key-points, while the
categories could be viewed as a one-dimensional descrip-
tor. The global alignment now turns into a hyper-matching
problem among the objects.

(2) Enhancement of object detection. On the other way
around, object detection could benefit from the global align-

ment as well, especially when we are not able to perform a
perfect detection on any data, due to noises and occlusions.
For each detected object in each of the data, we can try to
search more thoroughly in the nearby area in the other data,
after the two data have been globally aligned.

We plan to explore these possible improvements in our
future work.
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